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Abstract. We report geometry-induced fractal behaviour in the low-field magneto-conductance
fluctuations of a mesoscopic semiconductor billiard. Such fractal behaviour was recently
predicted to be induced by the mixed (chaotic/regular) phase space generated by the soft-walled
billiard potential, and our results constitute a possible experimental observation of the infinite
hierarchical nature of this mixed phase space. Preliminary investigations of the effects of
temperature and gate bias, which directly control the electron coherence and billiard potential
profile, are presented.

Due to the long electron mean free paths found in AlGaAs/GaAs heterostructures,
mesoscopic billiards provide an ideal environment for studies of electron quantum
interference (Ql) phenomena [1]. Application of a negative bias to metal gates deposited
on the heterostructure surface leads to electron depletion in regions directly below the
gates. Hence sub-micron cavities (billiards) can be defined in the two-dimensional electron
gas (2DEG) at the AlGaAs/GaAs interface. Electrons injected into these billiards travel
ballistically, with trajectories predominantly determined by the billiard geometry rather
than material-related scattering processes [2, 3]. At low temperatures, electrons preserve
their phase coherence whilst traversing the billiard, and semiclassical QI effects, such
as magneto-conductance fluctuations (MCF), result from pairs of trajectories which form
closed loops [4]. A recent semiclassical theory suggests that MCF observed in mesoscopic
electron systems are fractal [5] due to the trajectory trapping effect of regions of mixed
(chaotic/integrable) phase space. Fractal MCF have been observed in the quasi-ballistic
scattering regime in gold nano-wires [6]. In this paper, we report the observation of
geometry-induced fractal MCF in the fully ballistic scattering regime of a mesoscopic
semiconductor billiard. We discuss this new phenomenon in terms of the physical factors
which determine the fractal dimensidbe of the system [7]. Fractal analysis of MCF is
performed using four techniques to obtain an accurate estimate dbgtteependence on
experimental parameters such as the temperature, which limits the phase coherence in QI
processes, and gate bi&g, which determines the potential profile of the billiard. There
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has been considerable theoretical interest in the predictidbedbr a given system. The
De-values obtained from this device agree with those predicted for billiards defined by a
soft-wall potential profile [5].

For billiards approximated by a hard-wall description (a flat-bottomed billiard shaped
by walls of infinite height), the cavity geometry determines whether the electron classical
trajectories are chaotic or regular [2, 3, 8, 9]. Electron dynamics in a square billiard
are nominally regular with an escape probability distribution governed by a power law
P(t) «xt7” wherey > 2. Since the area contained by closed trajectory loops is dependent
on the time preceding electron escape from the billiard, regular billiards support a similar
area distributionP (A) o« A= with 8 > 2 [10]. In a semiclassical pictur&,(A4) determines
the magnetic field periodAB) content of the MCF structure throughB = h/eA [4,

11]. Recent theoretical investigations [5] have shown that soft-walled confining potentials,
which define semiconductor billiards, produce a mixed (chaotic/regular) phase space. The
escape of electron trajectories is then blocked by the infinite hierarchy of Cantori which
occur at the chaotic/regular boundary, resultingPitd) oc A=# with g < 2. Forg < 2,

the statistical properties of the magneto-conductance match those of a Gaussian random
process with variance of the incremems given by ((AG)?) « (AB)? and (AG) = 0.

In these expression®G = §G(B) — 3G (B + AB) with G = G(B) — (G(B)) [5, 7]. The
averaging( ) is performed oveiB. Such processes are termed fractional Brownian motion
and produce a fractal trace with dimension

DE=2-— g Q)

where 1< Dg < 2[5, 7]. In contrast, for8 > 2 the variance follows the relation
((AG)?) ~ (AB)? and fractal behaviour is not predicted. The observation of fractal MCF
is restricted to a finiteB field range. Semiclassical theories assume that on the scale of the
fluctuations the magnetic field induces changes only in the phases of the electron waves (due
to the introduction of the magnetic vector potential) and not in the curvature of the classical
trajectories [4]. At the magnetic field.y., the curvature of the trajectories is sufficient
that the classical cyclotron orbit can fit within the square. MCF at fields higher than this
arise from trajectories which form skipping orbits [12] and in this paper we concentrate on
fields belowBcyc. Within this field range, the fractal behaviour is predicted to be limited
to field scalesAB < Bc. The correlation fieldBc is determined fromF (Bc) = F(0)/2
where F(AB) = (8G(B) 8G(B + AB)) is the autocorrelation function [5, 6, 12F(AB)
is related to the variance by the expressiom\ B) = F(0) — (1/2)((AG)?) [6]. This limits
the largest field scale over which fractal behaviour is observed, and later we discuss the
factors which limit the smallest scale. We note that the above fractal behaviour implies
statistical self-similarity in the MCF. A subset of statistical self-similarity is the exact self-
similarity recently observed in the magneto-conductance of a semiconductor Sinai billiard
[13, 14]. The properties and physical conditions necessary for exact self-similarity have
been presented elsewhere [14].

To observe the predicted fractal behaviour, we consider the gate geometry shown in
figure 1, inset (a), which defines audm square billiard in the 2DEG located 71 nm below
the heterostructure surface. Quantum point contacts (QPCs) with lithographic widiim0.1
serve as entrance and exit ports. The billiard is significantly shorter than the electron mean
free path of~3 um and electrons travel ballistically through the device. Experiments
were performed at lattice temperatur@sin the range 30 mK—4 K. Measurements of
device electrical resistance as a function of magnetic field applied perpendicular to the
2DEG were made using a low-frequency four-terminal a.c. measuring technique. The
magneto-conductance appears as reproducible fluctuations superimposed on a slowly varying



background signal.
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Figure 1. MCF obtained from a Jum billiard with (1) T = 3.8 K and (2) T = 30 mK.
Insets: (a) a scanning electron micrograph of our billiard; the spacer bar indicateam;
(b), (c) Fourier transforms of MCF (1) and (2) respectively. Arrows indicate regions with

increased high-frequency MCF componentat 30 mK.

This background is removed by a polynomial fit subtraction and

converted to conductance prior to analysis, a standard technique for studies of MCF [12].
The resulting MCF trace has the propef(B)) = 0. Figure 1 displays typical data
at temperatures of (1J = 3.8 K and (2) T = 30 mK. Rich structure appears in the

30 mK trace: this broad spectrum of frequency components produces structure on finer
and finer field scales, and therefore raises the question of whether the MCF pattern has
a fractal quality. The respective Fourier transforms (figure 1, insets (b), (c)) demonstrate
the damping of higher-frequency components of the MCF with increasing temperature,
and hence we would expe@r to be temperature dependent. The analysis below, which
quantifies this prediction, is restricted to the parameter rarBjes By, = 0.2 T and
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Figure 2. (a) ((AG)?) versusA B averaged oveB = 0-0.2 T. The regiom B < Bc is used to
determineD{'. Inset: log ((AG)?2)) versus logA B used to obtairg. (b) —log N(AB) versus
log AB used to obtainDR?. (c) logC(AB) versus logAB used to obtainDE". (d) A plot of
L(AB) versusA B showing a lack of convergence to a fixed length with decreagiBgfor the
MCEF, indicative of fractal behaviour. Inset: ldgA B) versus logA B obtained after analysing
the MCF and a straight line as markeBg®®tis obtained from the line of best fit (dashed).

AB < Bc ~ 10 mT, as required by the semiclassical theory.

Fractal analysis is performed using four (variance, box counting, correlation and
coastline) techniques to establish consistent behaviouprohs experimental parameters
are adjusted. In general, fractal patterns are generated on the basis of a power-law
relationship [7, 15] between the statistics of the MCF being assessed (see below) and
the increment in magnetic field B, and the fractal dimension is extracted from the power-
law exponent. This quality of fractal MCF is true both for the statistical self-similarity
discussed here and the exact self-similarity presented elsewhere [13, 14]. The variance
technique used to calculate the ‘variance’ fractal dimendigff is based directly on the
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Figure 2. (Continued)

theoretical investigations presented above. In figure 2(a) we(plof)?) versusA B over
the rangeA Br < AB < 100 mT.ABg is the magnetic field resolution of 1 mT. In the limit
AB < Bc, B can be extracted from a linear fit of the plot (¢gAG)?)) versus l0gAB),
as shown in figure 2(a), inset. The fractal dimensigfi' is then obtained via equation (1).
The ‘capacity’ fractal dimensiorDEOX is evaluated using a box-counting technique,
where a mesh of boxes (or ‘cells’) is placed over the MCF as follows. The magnetic field
range of the MCF data is divided into segments each of width B. The conductance
range of the data (determined from the maximum and minimum valuegGpfis then
divided inton segments, creating a meshmok n boxes. A count of the number of boxes
N(AB) containing part of the data trace is made as the mesh becomes increasingly finer
until AB reaches the magnetic field resolutioBg. DEOX is defined by the power law

box

N(AB) = Alggok(AB)*DF
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wherek is a proportionality constant [15]. The fractal dimension for this technique is then
given by

logN(AB
D = |im logN(AB)

aB-0 log(AB) 2)

HenceD,*%OX is obtained by a linear fit te- log N(A B) versus logA B in the low-A B limit,
as shown in figure 2(b).

The ‘correlation’ dimensionDE”" is calculated using a method similar to the box-
counting technique. A circle of radiuAB is defined around each discrete poinin
the data set and the number; (A B) of other data pointg lying within it is counted. The
correlation functionC (A B) is then the sum oP;; (AB) over the set of data points such
that

1 N
C(AB) =+ > Pj(AB) (3)
ij=1

and N is the total number of data points. We note ti&tAB) is defined such that
C(AB) = 1 if all of the data points lie withinAB of each other. IfAB is less than
the smallest interval between data points, tiR(AB) = 0 andC(AB) = 0 [15]. A
trivial case of the latter is foA B < A Bg and hence this method is restricted to increments
AB > ABg [15]. The correlation dimension is defined by the power law

C(AB) = Alligrzok(AB)*Dgor

wherek is a proportionality constant [15]. Hence

pEr = jim 09C(AB) )
AB—0 log(AB)
D" is obtained by a linear fit of log (A B) versus logA B in the limit AB — 0, as shown
in figure 2(c).
The ‘coastline’ dimension follows that used by Richardson and later Mandelbrot in their

original work on coastlines [7], where a pair of dividers set to a leagshused to determine
the coastline lengthL(e). The lengthL(e) is given byg x e, whereq is the number of
steps along the coastline made by the dividers. We use a similar approach computationally
to obtain L(AB) for AB > ABg. As displayed in figure 2(d), the length(A B) steadily
increases for the MCF trace &sB is reduced, which is typical of fractal behaviour. The
coastline dimension is obtained from the power-law relationship

L(AB) = A|;3rEok(AB)l*D?"“

where agairk is a constant of proportionality [7]. Hence
D =1—m 5)

wherem is the slope of lod.(A B) versus logA B in the limit AB — 0. Plots of logL(AB)
versus logA B are shown in figure 2(d), inset, for a typical data set (sloped line). We also
show for comparison the same analysis performed on a straight line (non-fractal) where the
length L(AB) converges to a fixed value and with a gradient= 0, as expected. The
jagged nature of these graphs is due to the length-measuring process being restricted to
integer multiples of the length incrementB. This artefact of the analysis leads to some
uncertainty in the linear fits for smaller data sets and causes scatter iDSf&values
presented.

The results of fractal analysis of the MCF obtained at diffef@and Vg are displayed in
table 1. The pair of values listed for each experimental condition are obtained by sweeping
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Figure 3. A plot of the average effectivédr (left-hand axis,v) and r4 (right-hand axis/[J)
versusT. To ~ 105 mK andry ~ 95 ps are marked.

Table 1. Dr for each analysis technique, averaBg, s andl, for various7 and Vg.

T(K) Vs(V) D DR pg  pEast  AverageDe 14 (pS) I (um)

242 -0.64 131 103 120 1.33 1.22 31 8.5
242 -0.64 131 105 123 136 1.24 34 9.3
0.05 -0.64 144 117 152 1.30 1.36 97 26.6
0.05 -0.64 145 118 154 140 1.39 80 22.0
0.03 -0.6 147 123 151 131 1.38 81 22.2
0.03 -0.6 149 119 149 135 1.38 107 29.4
38 0.6 134 101 111 124 1.18 16 4.4

the magnetic field in opposite directions. Due to the Onsager relations [1], the MCF are
symmetric aboutB = 0 T and therefore a comparison of tlig-values within each pair

is indicative of the noise level. This is typically less than 2-3% [16]. For all of the
parameters 1< Dr < 2, as required for fractal behaviour. It is important to consider
the physical limitations which may lead to an ‘effective’ value lower than the true fractal
dimension induced by the billiard geometry. Theoretical expressions for each of the analysis
techniques specify that the linear fit be taken in the limit where the field incremént
approaches zero. This requirement implies infinite data resolution. In experiments, data
consist of a finite number of data points between which some form of interpolation is used.
Below A Bg, fractal analysis detects the interpolation which is inherently non-fractal. This
leads to an effectiveDg-value lower than the true fractal dimension of the data. Aside
from experimental limitations, there are other physical factors affecting assessments of
fractal behaviour at a finite temperatufe The phase coherence lendghestablishes an
upper limit on the accumulated trajectory area, limiting the smalleBtof the MCF [4].
Analysis of the phase-breaking time [12] gives ~ 90 ps at 30 mK, corresponding to

ly = vety ~ 24 um. As an estimate, if we consider a typical diamond-shaped periodic
orbit of length 2.8um for our billiard [17], we expect-8 orbits before phase coherence
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is lost and the electron no longer contributes to QI processes. This provides an upper area
limit of 4 um? and a corresponding smallest MCF period componenA B, ~ 1 mT.
Therefore at 30 mKABmin ~ ABr. With increasingT, thermally induced scattering
processes decreasg (as seen in figure 3) resulting in smaller maximum loop areas and
an increase inABmin, as evident from figure 1. Damping of MCF structure leads to a
decrease in the effectivBg provided thatABnin > ABgr. This condition is satisfied for

T > 30 mK and figure 3 confirms the expected reductio®pwith 7. We note that, and

D follow a strikingly similar evolution with7". Naively, assuming infinite field resolution,

this trend suggests that extrapolation towartds= 0 would result in an infinite spectrum

of MCF frequencies and the observation of purely geometry-inducedRig&) o« A~#)
fractal behaviour. However, the semiclassical approximation is predicted to break down
for temperatures beloWg = AE/kg = 2nh?/m*kgAg ~ 105 mK (Ag is the area of

the billiard andA E the energy level spacing), where the discrete energy level structure of
the billiard becomes resolved [18], and deviations from semiclassical theory are expected.
For T < Tg a saturation ofr, has been observed [18, 19], with a saturation value which
approximates to the Heisenberg time= h/kgTg [18]. Although further data are required

to establish a saturation trend, we note that befew r, agrees withry ~ 95 ps for our
billiard. Saturation ofry, for T < To means that the frequency spectrum of the MCF
will remain constant, and an associated saturation in the effe@pgalue is expected.
Further experiments are planned to investigate the possibilitre$aturation beyond the
semiclassical limit.

The electrostatic definition of the billiard implies that adjustments/inchange the
billiard potential profile and the mixed phase space responsible for the observed fractal
behaviour [5]. Hence we expedts to be effective in tuning the observed geometry-
induced fractal behaviour. A¥g is adjusted from—0.64 V to —0.6 V, a change in the
weak-localization peak lineshape [9] is observed, indicating a geometry-induced change
in the electron dynamics. An associated chang®jnvalues is also observed, as shown
in table 1. This is not related to the20 mK difference between the data sets, 1gs
has saturated at this temperature. Rather, we suggest that adjustments in the potential
profile associated with changirigs; alter the phase space and the trajectory trapping effect
responsible for the fractal behaviour. Experiments are planned to investigate the effect of
Ve more closely, and theoretical simulations accounting for soft-walled potentials are in
progress.

In conclusion, we report the observation of geometry-induced fractal behaviour in the
magneto-conductance of a mesoscopic semiconductor billiard. This fractal behaviour is
consistent with recent semiclassical theory investigating the trapping of trajectories by the
infinite hierarchy of Cantori formed at the chaotic/regular boundary of the mixed phase
space generated by soft-walled confining potentials in the billiard. Observations of the
temperature behaviour indicate an increasing effectigewith decreasing temperature for
T > To, where the discrete energy levels become resolved. This temperature dependence is
associated with increasing phase coherence length raising the MCF frequency content. We
also note a change ibg with Vg, demonstrating the association between fractal behaviour
and billiard potential profile.
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