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Abstract. We report geometry-induced fractal behaviour in the low-field magneto-conductance
fluctuations of a mesoscopic semiconductor billiard. Such fractal behaviour was recently
predicted to be induced by the mixed (chaotic/regular) phase space generated by the soft-walled
billiard potential, and our results constitute a possible experimental observation of the infinite
hierarchical nature of this mixed phase space. Preliminary investigations of the effects of
temperature and gate bias, which directly control the electron coherence and billiard potential
profile, are presented.

Due to the long electron mean free paths found in AlGaAs/GaAs heterostructures,
mesoscopic billiards provide an ideal environment for studies of electron quantum
interference (QI) phenomena [1]. Application of a negative bias to metal gates deposited
on the heterostructure surface leads to electron depletion in regions directly below the
gates. Hence sub-micron cavities (billiards) can be defined in the two-dimensional electron
gas (2DEG) at the AlGaAs/GaAs interface. Electrons injected into these billiards travel
ballistically, with trajectories predominantly determined by the billiard geometry rather
than material-related scattering processes [2, 3]. At low temperatures, electrons preserve
their phase coherence whilst traversing the billiard, and semiclassical QI effects, such
as magneto-conductance fluctuations (MCF), result from pairs of trajectories which form
closed loops [4]. A recent semiclassical theory suggests that MCF observed in mesoscopic
electron systems are fractal [5] due to the trajectory trapping effect of regions of mixed
(chaotic/integrable) phase space. Fractal MCF have been observed in the quasi-ballistic
scattering regime in gold nano-wires [6]. In this paper, we report the observation of
geometry-induced fractal MCF in the fully ballistic scattering regime of a mesoscopic
semiconductor billiard. We discuss this new phenomenon in terms of the physical factors
which determine the fractal dimensionDF of the system [7]. Fractal analysis of MCF is
performed using four techniques to obtain an accurate estimate of theDF-dependence on
experimental parameters such as the temperature, which limits the phase coherence in QI
processes, and gate biasVG, which determines the potential profile of the billiard. There
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has been considerable theoretical interest in the prediction ofDF for a given system. The
DF-values obtained from this device agree with those predicted for billiards defined by a
soft-wall potential profile [5].

For billiards approximated by a hard-wall description (a flat-bottomed billiard shaped
by walls of infinite height), the cavity geometry determines whether the electron classical
trajectories are chaotic or regular [2, 3, 8, 9]. Electron dynamics in a square billiard
are nominally regular with an escape probability distribution governed by a power law
P(t) ∝ t−γ whereγ > 2. Since the area contained by closed trajectory loops is dependent
on the time preceding electron escape from the billiard, regular billiards support a similar
area distribution,P(A) ∝ A−β with β > 2 [10]. In a semiclassical picture,P(A) determines
the magnetic field period (1B) content of the MCF structure through1B = h/eA [4,
11]. Recent theoretical investigations [5] have shown that soft-walled confining potentials,
which define semiconductor billiards, produce a mixed (chaotic/regular) phase space. The
escape of electron trajectories is then blocked by the infinite hierarchy of Cantori which
occur at the chaotic/regular boundary, resulting inP(A) ∝ A−β with β 6 2. For β 6 2,
the statistical properties of the magneto-conductance match those of a Gaussian random
process with variance of the increments1B given by 〈(1G)2〉 ∝ (1B)β and 〈1G〉 = 0.
In these expressions,1G = δG(B)− δG(B+1B) with δG = G(B)−〈G(B)〉 [5, 7]. The
averaging〈 〉 is performed overB. Such processes are termed fractional Brownian motion
and produce a fractal trace with dimension

DF = 2− β
2

(1)

where 1< DF < 2 [5, 7]. In contrast, forβ > 2 the variance follows the relation
〈(1G)2〉 ∼ (1B)2 and fractal behaviour is not predicted. The observation of fractal MCF
is restricted to a finite-B field range. Semiclassical theories assume that on the scale of the
fluctuations the magnetic field induces changes only in the phases of the electron waves (due
to the introduction of the magnetic vector potential) and not in the curvature of the classical
trajectories [4]. At the magnetic fieldBcyc, the curvature of the trajectories is sufficient
that the classical cyclotron orbit can fit within the square. MCF at fields higher than this
arise from trajectories which form skipping orbits [12] and in this paper we concentrate on
fields belowBcyc. Within this field range, the fractal behaviour is predicted to be limited
to field scales1B < BC. The correlation fieldBC is determined fromF(BC) = F(0)/2
whereF(1B) = 〈δG(B) δG(B +1B)〉 is the autocorrelation function [5, 6, 12].F(1B)
is related to the variance by the expressionF(1B) = F(0)− (1/2)〈(1G)2〉 [6]. This limits
the largest field scale over which fractal behaviour is observed, and later we discuss the
factors which limit the smallest scale. We note that the above fractal behaviour implies
statistical self-similarity in the MCF. A subset of statistical self-similarity is the exact self-
similarity recently observed in the magneto-conductance of a semiconductor Sinai billiard
[13, 14]. The properties and physical conditions necessary for exact self-similarity have
been presented elsewhere [14].

To observe the predicted fractal behaviour, we consider the gate geometry shown in
figure 1, inset (a), which defines a 1µm square billiard in the 2DEG located 71 nm below
the heterostructure surface. Quantum point contacts (QPCs) with lithographic width 0.1µm
serve as entrance and exit ports. The billiard is significantly shorter than the electron mean
free path of∼3 µm and electrons travel ballistically through the device. Experiments
were performed at lattice temperaturesT in the range 30 mK–4 K. Measurements of
device electrical resistance as a function of magnetic field applied perpendicular to the
2DEG were made using a low-frequency four-terminal a.c. measuring technique. The
magneto-conductance appears as reproducible fluctuations superimposed on a slowly varying
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Figure 1. MCF obtained from a 1µm billiard with (1) T = 3.8 K and (2) T = 30 mK.
Insets: (a) a scanning electron micrograph of our billiard; the spacer bar indicates∼1 µm;
(b), (c) Fourier transforms of MCF (1) and (2) respectively. Arrows indicate regions with
increased high-frequency MCF component atT = 30 mK.

background signal. This background is removed by a polynomial fit subtraction and
converted to conductance prior to analysis, a standard technique for studies of MCF [12].
The resulting MCF trace has the property〈G(B)〉 = 0. Figure 1 displays typical data
at temperatures of (1)T = 3.8 K and (2) T = 30 mK. Rich structure appears in the
30 mK trace: this broad spectrum of frequency components produces structure on finer
and finer field scales, and therefore raises the question of whether the MCF pattern has
a fractal quality. The respective Fourier transforms (figure 1, insets (b), (c)) demonstrate
the damping of higher-frequency components of the MCF with increasing temperature,
and hence we would expectDF to be temperature dependent. The analysis below, which
quantifies this prediction, is restricted to the parameter rangesB < Bcyc = 0.2 T and
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Figure 2. (a) 〈(1G)2〉 versus1B averaged overB = 0–0.2 T. The region1B < BC is used to
determineDvar

F . Inset: log(〈(1G)2〉) versus log1B used to obtainβ. (b) − logN(1B) versus
log1B used to obtainDbox

F . (c) logC(1B) versus log1B used to obtainDcor
F . (d) A plot of

L(1B) versus1B showing a lack of convergence to a fixed length with decreasing1B for the
MCF, indicative of fractal behaviour. Inset: logL(1B) versus log1B obtained after analysing
the MCF and a straight line as marked.Dcoast

F is obtained from the line of best fit (dashed).

1B < BC ∼ 10 mT, as required by the semiclassical theory.
Fractal analysis is performed using four (variance, box counting, correlation and

coastline) techniques to establish consistent behaviour ofDF as experimental parameters
are adjusted. In general, fractal patterns are generated on the basis of a power-law
relationship [7, 15] between the statistics of the MCF being assessed (see below) and
the increment in magnetic field1B, and the fractal dimension is extracted from the power-
law exponent. This quality of fractal MCF is true both for the statistical self-similarity
discussed here and the exact self-similarity presented elsewhere [13, 14]. The variance
technique used to calculate the ‘variance’ fractal dimensionDvar

F is based directly on the
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Figure 2. (Continued)

theoretical investigations presented above. In figure 2(a) we plot〈(1G)2〉 versus1B over
the range1BR < 1B < 100 mT.1BR is the magnetic field resolution of 1 mT. In the limit
1B < BC, β can be extracted from a linear fit of the plot log(〈(1G)2〉) versus log(1B),
as shown in figure 2(a), inset. The fractal dimensionDvar

F is then obtained via equation (1).
The ‘capacity’ fractal dimensionDbox

F is evaluated using a box-counting technique,
where a mesh of boxes (or ‘cells’) is placed over the MCF as follows. The magnetic field
range of the MCF data is divided inton segments each of width1B. The conductance
range of the data (determined from the maximum and minimum values ofδG) is then
divided inton segments, creating a mesh ofn× n boxes. A count of the number of boxes
N(1B) containing part of the data trace is made as the mesh becomes increasingly finer
until 1B reaches the magnetic field resolution1BR. Dbox

F is defined by the power law

N(1B) = lim
1B→0

k(1B)−D
box
F
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wherek is a proportionality constant [15]. The fractal dimension for this technique is then
given by

Dbox
F = lim

1B→0

logN(1B)

log(1B)
. (2)

HenceDbox
F is obtained by a linear fit to− logN(1B) versus log1B in the low-1B limit,

as shown in figure 2(b).
The ‘correlation’ dimensionDcor

F is calculated using a method similar to the box-
counting technique. A circle of radius1B is defined around each discrete pointi in
the data set and the numberPij (1B) of other data pointsj lying within it is counted. The
correlation functionC(1B) is then the sum ofPij (1B) over the set of data pointsj such
that

C(1B) = 1

N2

N∑
i,j=1

Pij (1B) (3)

and N is the total number of data points. We note thatC(1B) is defined such that
C(1B) = 1 if all of the data points lie within1B of each other. If1B is less than
the smallest interval between data points, thenPij (1B) = 0 andC(1B) = 0 [15]. A
trivial case of the latter is for1B < 1BR and hence this method is restricted to increments
1B > 1BR [15]. The correlation dimension is defined by the power law

C(1B) = lim
1B→0

k(1B)−D
cor
F

wherek is a proportionality constant [15]. Hence

Dcor
F = lim

1B→0

logC(1B)

log(1B)
. (4)

Dcor
F is obtained by a linear fit of logC(1B) versus log1B in the limit1B → 0, as shown

in figure 2(c).
The ‘coastline’ dimension follows that used by Richardson and later Mandelbrot in their

original work on coastlines [7], where a pair of dividers set to a lengthε is used to determine
the coastline lengthL(ε). The lengthL(ε) is given byq × ε, whereq is the number of
steps along the coastline made by the dividers. We use a similar approach computationally
to obtainL(1B) for 1B > 1BR. As displayed in figure 2(d), the lengthL(1B) steadily
increases for the MCF trace as1B is reduced, which is typical of fractal behaviour. The
coastline dimension is obtained from the power-law relationship

L(1B) = lim
1B→0

k(1B)1−D
coast
F

where againk is a constant of proportionality [7]. Hence

Dcoast
F = 1−m (5)

wherem is the slope of logL(1B) versus log1B in the limit1B → 0. Plots of logL(1B)
versus log1B are shown in figure 2(d), inset, for a typical data set (sloped line). We also
show for comparison the same analysis performed on a straight line (non-fractal) where the
lengthL(1B) converges to a fixed value and with a gradientm = 0, as expected. The
jagged nature of these graphs is due to the length-measuring process being restricted to
integer multiples of the length increment1B. This artefact of the analysis leads to some
uncertainty in the linear fits for smaller data sets and causes scatter in theDcoast

F -values
presented.

The results of fractal analysis of the MCF obtained at differentT andVG are displayed in
table 1. The pair of values listed for each experimental condition are obtained by sweeping
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Figure 3. A plot of the average effectiveDF (left-hand axis,O) and τφ (right-hand axis,�)
versusT . TQ ∼ 105 mK andτH ∼ 95 ps are marked.

Table 1. DF for each analysis technique, averageDF, τφ and lφ for variousT andVG.

T (K) VG (V) Dvar
F Dbox

F Dcor
F Dcoast

F AverageDF τφ (ps) lφ (µm)

2.42 −0.64 1.31 1.03 1.20 1.33 1.22 31 8.5
2.42 −0.64 1.31 1.05 1.23 1.36 1.24 34 9.3
0.05 −0.64 1.44 1.17 1.52 1.30 1.36 97 26.6
0.05 −0.64 1.45 1.18 1.54 1.40 1.39 80 22.0
0.03 −0.6 1.47 1.23 1.51 1.31 1.38 81 22.2
0.03 −0.6 1.49 1.19 1.49 1.35 1.38 107 29.4
3.8 −0.6 1.34 1.01 1.11 1.24 1.18 16 4.4

the magnetic field in opposite directions. Due to the Onsager relations [1], the MCF are
symmetric aboutB = 0 T and therefore a comparison of theDF-values within each pair
is indicative of the noise level. This is typically less than 2–3% [16]. For all of the
parameters 1< DF < 2, as required for fractal behaviour. It is important to consider
the physical limitations which may lead to an ‘effective’ value lower than the true fractal
dimension induced by the billiard geometry. Theoretical expressions for each of the analysis
techniques specify that the linear fit be taken in the limit where the field increment1B

approaches zero. This requirement implies infinite data resolution. In experiments, data
consist of a finite number of data points between which some form of interpolation is used.
Below1BR, fractal analysis detects the interpolation which is inherently non-fractal. This
leads to an effectiveDF-value lower than the true fractal dimension of the data. Aside
from experimental limitations, there are other physical factors affecting assessments of
fractal behaviour at a finite temperatureT . The phase coherence lengthlφ establishes an
upper limit on the accumulated trajectory area, limiting the smallest1B of the MCF [4].
Analysis of the phase-breaking time [12] givesτφ ∼ 90 ps at 30 mK, corresponding to
lφ = vFτφ ∼ 24 µm. As an estimate, if we consider a typical diamond-shaped periodic
orbit of length 2.8µm for our billiard [17], we expect∼8 orbits before phase coherence
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is lost and the electron no longer contributes to QI processes. This provides an upper area
limit of 4 µm2 and a corresponding smallest MCF period component of1Bmin ∼ 1 mT.
Therefore at 30 mK,1Bmin ∼ 1BR. With increasingT , thermally induced scattering
processes decreaseτφ (as seen in figure 3) resulting in smaller maximum loop areas and
an increase in1Bmin, as evident from figure 1. Damping of MCF structure leads to a
decrease in the effectiveDF provided that1Bmin > 1BR. This condition is satisfied for
T > 30 mK and figure 3 confirms the expected reduction inDF with T . We note thatτφ and
DF follow a strikingly similar evolution withT . Naively, assuming infinite field resolution,
this trend suggests that extrapolation towardsT = 0 would result in an infinite spectrum
of MCF frequencies and the observation of purely geometry-induced (i.e.P(A) ∝ A−β)
fractal behaviour. However, the semiclassical approximation is predicted to break down
for temperatures belowTQ = 1E/kB = 2πh̄2/m∗kBAB ∼ 105 mK (AB is the area of
the billiard and1E the energy level spacing), where the discrete energy level structure of
the billiard becomes resolved [18], and deviations from semiclassical theory are expected.
For T < TQ a saturation ofτφ has been observed [18, 19], with a saturation value which
approximates to the Heisenberg timeτH = h̄/kBTQ [18]. Although further data are required
to establish a saturation trend, we note that belowTQ, τφ agrees withτH ∼ 95 ps for our
billiard. Saturation ofτφ for T < TQ means that the frequency spectrum of the MCF
will remain constant, and an associated saturation in the effectiveDF-value is expected.
Further experiments are planned to investigate the possibility ofDF-saturation beyond the
semiclassical limit.

The electrostatic definition of the billiard implies that adjustments inVG change the
billiard potential profile and the mixed phase space responsible for the observed fractal
behaviour [5]. Hence we expectVG to be effective in tuning the observed geometry-
induced fractal behaviour. AsVG is adjusted from−0.64 V to−0.6 V, a change in the
weak-localization peak lineshape [9] is observed, indicating a geometry-induced change
in the electron dynamics. An associated change inDF-values is also observed, as shown
in table 1. This is not related to the∼20 mK difference between the data sets, asτφ
has saturated at this temperature. Rather, we suggest that adjustments in the potential
profile associated with changingVG alter the phase space and the trajectory trapping effect
responsible for the fractal behaviour. Experiments are planned to investigate the effect of
VG more closely, and theoretical simulations accounting for soft-walled potentials are in
progress.

In conclusion, we report the observation of geometry-induced fractal behaviour in the
magneto-conductance of a mesoscopic semiconductor billiard. This fractal behaviour is
consistent with recent semiclassical theory investigating the trapping of trajectories by the
infinite hierarchy of Cantori formed at the chaotic/regular boundary of the mixed phase
space generated by soft-walled confining potentials in the billiard. Observations of the
temperature behaviour indicate an increasing effectiveDF with decreasing temperature for
T > TQ, where the discrete energy levels become resolved. This temperature dependence is
associated with increasing phase coherence length raising the MCF frequency content. We
also note a change inDF with VG, demonstrating the association between fractal behaviour
and billiard potential profile.
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